extendr_api/lib.rs
1//! An ergonomic, opinionated, safe and user-friendly wrapper to the R-API
2//!
3//! This library aims to provide an interface that will be familiar to
4//! first-time users of Rust or indeed any compiled language.
5//!
6//! See [`Robj`] for much of the content of this crate.
7//! [`Robj`] provides a safe wrapper for the R object type.
8//!
9//! ## Examples
10//!
11//! Use attributes and macros to export to R.
12//!
13//! ```ignore
14//! use extendr_api::prelude::*;
15//! // Export a function or impl to R.
16//! #[extendr]
17//! fn fred(a: i32) -> i32 {
18//! a + 1
19//! }
20//!
21//! // define exports using extendr_module
22//! extendr_module! {
23//! mod mymodule;
24//! fn fred;
25//! }
26//!
27//! ```
28//!
29//! In R:
30//!
31//! ```ignore
32//! result <- fred(1)
33//! ```
34//!
35//! [Robj] is a wrapper for R objects.
36//! The r!() and R!() macros let you build R objects
37//! using Rust and R syntax respectively.
38//! ```
39//! use extendr_api::prelude::*;
40//! test! {
41//! // An R object with a single string "hello"
42//! let character = r!("hello");
43//! let character = r!(["hello", "goodbye"]);
44//!
45//! // An R integer object with a single number 1L.
46//! // Note that in Rust, 1 is an integer and 1.0 is a real.
47//! let integer = r!(1);
48//!
49//! // An R real object with a single number 1.
50//! // Note that in R, 1 is a real and 1L is an integer.
51//! let real = r!(1.0);
52//!
53//! // An R real vector.
54//! let real_vector = r!([1.0, 2.0]);
55//! let real_vector = &[1.0, 2.0].iter().collect_robj();
56//! let real_vector = r!(vec![1.0, 2.0]);
57//!
58//! // An R function object.
59//! let function = R!("function(x, y) { x + y }")?;
60//!
61//! // A named list using the list! macro.
62//! let list = list!(a = 1, b = 2);
63//!
64//! // An unnamed list (of R objects) using the List wrapper.
65//! let list = r!(List::from_values(vec![1, 2, 3]));
66//! let list = r!(List::from_values(vec!["a", "b", "c"]));
67//! let list = r!(List::from_values(&[r!("a"), r!(1), r!(2.0)]));
68//!
69//! // A symbol
70//! let sym = sym!(wombat);
71//!
72//! // A R vector using collect_robj()
73//! let vector = (0..3).map(|x| x * 10).collect_robj();
74//! }
75//! ```
76//!
77//! In Rust, we prefer to use iterators rather than loops.
78//!
79//! ```
80//! use extendr_api::prelude::*;
81//! test! {
82//! // 1 ..= 100 is the same as 1:100
83//! let res = r!(1 ..= 100);
84//! assert_eq!(res, R!("1:100")?);
85//!
86//! // Rust arrays are zero-indexed so it is more common to use 0 .. 100.
87//! let res = r!(0 .. 100);
88//! assert_eq!(res.len(), 100);
89//!
90//! // Using map is a super fast way to generate vectors.
91//! let iter = (0..3).map(|i| format!("fred{}", i));
92//! let character = iter.collect_robj();
93//! assert_eq!(character, r!(["fred0", "fred1", "fred2"]));
94//! }
95//! ```
96//!
97//! To index a vector, first convert it to a slice and then
98//! remember to use 0-based indexing. In Rust, going out of bounds
99//! will cause and error (a panic) unlike C++ which may crash.
100//! ```
101//! use extendr_api::prelude::*;
102//! test! {
103//! let vals = r!([1.0, 2.0]);
104//! let slice = vals.as_real_slice().ok_or("expected slice")?;
105//! let one = slice[0];
106//! let two = slice[1];
107//! // let error = slice[2];
108//! assert_eq!(one, 1.0);
109//! assert_eq!(two, 2.0);
110//! }
111//! ```
112//!
113//! Much slower, but more general are these methods:
114//! ```
115//! use extendr_api::prelude::*;
116//! test! {
117//! let vals = r!([1.0, 2.0, 3.0]);
118//!
119//! // one-based indexing [[i]], returns an object.
120//! assert_eq!(vals.index(1)?, r!(1.0));
121//!
122//! // one-based slicing [x], returns an object.
123//! assert_eq!(vals.slice(1..=2)?, r!([1.0, 2.0]));
124//!
125//! // $ operator, returns an object
126//! let list = list!(a = 1.0, b = "xyz");
127//! assert_eq!(list.dollar("a")?, r!(1.0));
128//! }
129//! ```
130//!
131//! The [R!] macro lets you embed R code in Rust
132//! and takes Rust expressions in {{ }} pairs.
133//!
134//! The [Rraw!] macro will not expand the {{ }} pairs.
135//! ```
136//! use extendr_api::prelude::*;
137//! test! {
138//! // The text "1 + 1" is parsed as R source code.
139//! // The result is 1.0 + 1.0 in Rust.
140//! assert_eq!(R!("1 + 1")?, r!(2.0));
141//!
142//! let a = 1.0;
143//! assert_eq!(R!("1 + {{a}}")?, r!(2.0));
144//!
145//! assert_eq!(R!(r"
146//! x <- {{ a }}
147//! x + 1
148//! ")?, r!(2.0));
149//!
150//! assert_eq!(R!(r#"
151//! x <- "hello"
152//! x
153//! "#)?, r!("hello"));
154//!
155//! // Use the R meaning of {{ }} and do not expand.
156//! assert_eq!(Rraw!(r"
157//! x <- {{ 1 }}
158//! x + 1
159//! ")?, r!(2.0));
160//! }
161//! ```
162//!
163//! The [r!] macro converts a rust object to an R object
164//! and takes parameters.
165//! ```
166//! use extendr_api::prelude::*;
167//! test! {
168//! // The text "1.0+1.0" is parsed as Rust source code.
169//! let one = 1.0;
170//! assert_eq!(r!(one+1.0), r!(2.0));
171//! }
172//! ```
173//!
174//! Rust has a concept of "Owned" and "Borrowed" objects.
175//!
176//! Owned objects, such as [Vec] and [String] allocate memory
177//! which is released when the object lifetime ends.
178//!
179//! Borrowed objects such as &[i32] and &str are just pointers
180//! to annother object's memory and can't live longer than the
181//! object they reference.
182//!
183//! Borrowed objects are much faster than owned objects and use less
184//! memory but are used only for temporary access.
185//!
186//! When we take a slice of an R vector, for example, we need the
187//! original R object to be alive or the data will be corrupted.
188//!
189//! ```
190//! use extendr_api::prelude::*;
191//! test! {
192//! // robj is an "Owned" object that controls the memory allocated.
193//! let robj = r!([1, 2, 3]);
194//!
195//! // Here slice is a "borrowed" reference to the bytes in robj.
196//! // and cannot live longer than robj.
197//! let slice = robj.as_integer_slice().ok_or("expected slice")?;
198//! assert_eq!(slice.len(), 3);
199//! }
200//! ```
201//!
202//! ## Writing tests
203//!
204//! To test the functions exposed to R, wrap your code in the [`test!`] macro.
205//! This macro starts up the necessary R machinery for tests to work.
206//!
207//! ```no_run
208//! use extendr_api::prelude::*;
209//!
210//! #[extendr]
211//! fn things() -> Strings {
212//! Strings::from_values(vec!["Test", "this"])
213//! }
214//!
215//! // define exports using extendr_module
216//! extendr_module! {
217//! mod mymodule;
218//! fn things;
219//! }
220//!
221//!
222//! #[cfg(test)]
223//! mod test {
224//! use super::*;
225//! use extendr_api::prelude::*;
226//!
227//! #[test]
228//! fn test_simple_function() {
229//! assert_eq!(things().elt(0), "Test")
230//! }
231//! }
232//! ```
233//!
234//! ## Returning `Result<T, E>` to R
235//!
236//! Two experimental features for returning error-aware R `list`s, `result_list` and `result_condition`,
237//! can be toggled to avoid panics on `Err`. Instead, an `Err` `x` is returned as either
238//! - list: `list(ok=NULL, err=x)` when `result_list` is enabled,
239//! - error condition: `<error: extendr_error>`, with `x` placed in `condition$value`, when `resultd_condition` is enabled.
240//!
241//! It is currently solely up to the user to handle any result on R side.
242//!
243//! There is an added overhead of wrapping Rust results in an R `list` object.
244//!
245//! ```ignore
246//! use extendr_api::prelude::*;
247//! // simple function always returning an Err string
248//! #[extendr]
249//! fn oups(a: i32) -> std::result::Result<i32, String> {
250//! Err("I did it again".to_string())
251//! }
252//!
253//! // define exports using extendr_module
254//! extendr_module! {
255//! mod mymodule;
256//! fn oups;
257//! }
258//!
259//! ```
260//!
261//! In R:
262//!
263//! ```ignore
264//! # default result_panic feature
265//! oups(1)
266//! > ... long panic traceback from rust printed to stderr
267//!
268//! # result_list feature
269//! lst <- oups(1)
270//! print(lst)
271//! > list(ok = NULL, err = "I did it again")
272//!
273//! # result_condition feature
274//! cnd <- oups(1)
275//! print(cnd)
276//! > <error: extendr_error>
277//! print(cnd$value)
278//! > "I did it again"
279//!
280//! # handling example for result_condition
281//! oups_handled <- function(a) {
282//! val_or_err <- oups(1)
283//! if (inherits(val_or_err, "extendr_error")) stop(val_or_err)
284//! val_or_err
285//! }
286//! ```
287//!
288//! ## Feature gates
289//!
290//! extendr-api has some optional features behind these feature gates:
291//!
292//! - `ndarray`: provides the conversion between R's matrices and [`ndarray`](https://docs.rs/ndarray/latest/ndarray/).
293//! - `num-complex`: provides the conversion between R's complex numbers and [`num-complex`](https://docs.rs/num-complex/latest/num_complex/).
294//! - `serde`: provides the [`serde`](https://serde.rs/) support.
295//! - `graphics`: provides the functionality to control or implement graphics devices.
296//! - `either`: provides implementation of type conversion traits for `Either<L, R>` from [`either`](https://docs.rs/either/latest/either/) if `L` and `R` both implement those traits.
297//! - `faer`: provides conversion between R's matrices and [`faer`](https://docs.rs/faer/latest/faer/).
298//!
299//! extendr-api supports three ways of returning a Result<T,E> to R.
300//! Only one behavior feature can be enabled at a time.
301//! - `result_panic`: Default behavior, return `Ok` as is, panic! on any `Err`
302//!
303//! Default behavior can be overridden by specifying `extend_api` features, i.e. `extendr-api = {..., default-features = false, features= ["result_condition"]}`
304//! These features are experimental and are subject to change.
305//! - `result_list`: return `Ok` as `list(ok=?, err=NULL)` or `Err` `list(ok=NULL, err=?)`
306//! - `result_condition`: return `Ok` as is or `Err` as $value in an R error condition.
307#![doc(
308 html_logo_url = "https://raw.githubusercontent.com/extendr/extendr/master/extendr-logo-256.png"
309)]
310
311pub mod error;
312pub mod functions;
313pub mod io;
314pub mod iter;
315pub mod lang_macros;
316pub mod metadata;
317pub mod na;
318pub mod optional;
319pub mod ownership;
320pub mod prelude;
321pub mod rmacros;
322pub mod robj;
323pub mod scalar;
324pub mod thread_safety;
325pub mod wrapper;
326
327pub use robj::Robj;
328pub use std::convert::{TryFrom, TryInto};
329pub use std::ops::Deref;
330pub use std::ops::DerefMut;
331
332#[cfg(feature = "serde")]
333pub mod serializer;
334
335#[cfg(feature = "serde")]
336pub mod deserializer;
337
338#[cfg(feature = "graphics")]
339pub mod graphics;
340
341pub(crate) mod conversions;
342
343//////////////////////////////////////////////////
344// Note these pub use statements are deprecated
345//
346// `use extendr_api::prelude::*;`
347//
348// instead.
349
350pub use error::*;
351pub use functions::*;
352pub use lang_macros::*;
353pub use na::*;
354pub use robj::*;
355pub use thread_safety::{catch_r_error, single_threaded, throw_r_error};
356pub use wrapper::*;
357
358pub use extendr_macros::*;
359
360use extendr_ffi::SEXPTYPE;
361use scalar::Rbool;
362
363//////////////////////////////////////////////////
364
365/// TRUE value eg. `r!(TRUE)`
366pub const TRUE: Rbool = Rbool::true_value();
367
368/// FALSE value eg. `r!(FALSE)`
369pub const FALSE: Rbool = Rbool::false_value();
370
371/// NULL value eg. `r!(NULL)`
372pub const NULL: () = ();
373
374/// NA value for integers eg. `r!(NA_INTEGER)`
375pub const NA_INTEGER: Option<i32> = None;
376
377/// NA value for real values eg. `r!(NA_REAL)`
378pub const NA_REAL: Option<f64> = None;
379
380/// NA value for strings. `r!(NA_STRING)`
381pub const NA_STRING: Option<&str> = None;
382
383/// NA value for logical. `r!(NA_LOGICAL)`
384pub const NA_LOGICAL: Rbool = Rbool::na_value();
385
386#[doc(hidden)]
387pub use std::collections::HashMap;
388
389/// This is needed for the generation of wrappers.
390#[doc(hidden)]
391pub use extendr_ffi::DllInfo;
392
393/// This is necessary for `#[extendr]`-impl
394#[doc(hidden)]
395pub use extendr_ffi::R_ExternalPtrAddr;
396
397/// This is used in `#[extendr(use_rng = true)]` on `fn`-items.
398#[doc(hidden)]
399pub use extendr_ffi::GetRNGstate;
400
401/// This is used in `#[extendr(use_rng = true)]` on `fn`-items.
402#[doc(hidden)]
403pub use extendr_ffi::PutRNGstate;
404
405#[doc(hidden)]
406pub use extendr_ffi::SEXP;
407
408#[doc(hidden)]
409use std::ffi::CString;
410
411pub use metadata::Metadata;
412
413#[doc(hidden)]
414pub struct CallMethod {
415 pub call_symbol: std::ffi::CString,
416 pub func_ptr: *const u8,
417 pub num_args: i32,
418}
419
420unsafe fn make_method_def(
421 cstrings: &mut Vec<std::ffi::CString>,
422 rmethods: &mut Vec<extendr_ffi::R_CallMethodDef>,
423 func: &metadata::Func,
424 wrapped_name: &str,
425) {
426 cstrings.push(std::ffi::CString::new(wrapped_name).unwrap());
427 rmethods.push(extendr_ffi::R_CallMethodDef {
428 name: cstrings.last().unwrap().as_ptr(),
429 fun: Some(std::mem::transmute::<
430 *const u8,
431 unsafe extern "C" fn() -> *mut std::ffi::c_void,
432 >(func.func_ptr)),
433 numArgs: func.args.len() as i32,
434 });
435}
436
437// Internal function used to implement the .Call interface.
438// This is called from the code generated by the #[extendr] attribute.
439#[doc(hidden)]
440pub unsafe fn register_call_methods(info: *mut extendr_ffi::DllInfo, metadata: Metadata) {
441 let mut rmethods = Vec::new();
442 let mut cstrings = Vec::new();
443 for func in metadata.functions {
444 let wrapped_name = format!("wrap__{}", func.mod_name);
445 make_method_def(&mut cstrings, &mut rmethods, &func, wrapped_name.as_str());
446 }
447
448 for imp in metadata.impls {
449 for func in imp.methods {
450 let wrapped_name = format!("wrap__{}__{}", imp.name, func.mod_name);
451 make_method_def(&mut cstrings, &mut rmethods, &func, wrapped_name.as_str());
452 }
453 }
454
455 rmethods.push(extendr_ffi::R_CallMethodDef {
456 name: std::ptr::null(),
457 fun: None,
458 numArgs: 0,
459 });
460
461 extendr_ffi::R_registerRoutines(
462 info,
463 std::ptr::null(),
464 rmethods.as_ptr(),
465 std::ptr::null(),
466 std::ptr::null(),
467 );
468
469 // This seems to allow both symbols and strings,
470 extendr_ffi::R_useDynamicSymbols(info, extendr_ffi::Rboolean::FALSE);
471 extendr_ffi::R_forceSymbols(info, extendr_ffi::Rboolean::FALSE);
472}
473
474/// Type of R objects used by [Robj::rtype].
475#[derive(Debug, PartialEq)]
476pub enum Rtype {
477 Null, // NILSXP
478 Symbol, // SYMSXP
479 Pairlist, // LISTSXP
480 Function, // CLOSXP
481 Environment, // ENVSXP
482 Promise, // PROMSXP
483 Language, // LANGSXP
484 Special, // SPECIALSXP
485 Builtin, // BUILTINSXP
486 Rstr, // CHARSXP
487 Logicals, // LGLSXP
488 Integers, // INTSXP
489 Doubles, // REALSXP
490 Complexes, // CPLXSXP
491 Strings, // STRSXP
492 Dot, // DOTSXP
493 Any, // ANYSXP
494 List, // VECSXP
495 Expressions, // EXPRSXP
496 Bytecode, // BCODESXP
497 ExternalPtr, // EXTPTRSXP
498 WeakRef, // WEAKREFSXP
499 Raw, // RAWSXP
500 S4, // S4SXP
501 Unknown,
502}
503
504/// Enum use to unpack R objects into their specialist wrappers.
505// Todo: convert all Robj types to wrappers.
506// Note: this only works if the wrappers are all just SEXPs.
507#[derive(Debug, PartialEq)]
508pub enum Rany<'a> {
509 Null(&'a Robj), // NILSXP
510 Symbol(&'a Symbol), // SYMSXP
511 Pairlist(&'a Pairlist), // LISTSXP
512 Function(&'a Function), // CLOSXP
513 Environment(&'a Environment), // ENVSXP
514 Promise(&'a Promise), // PROMSXP
515 Language(&'a Language), // LANGSXP
516 Special(&'a Primitive), // SPECIALSXP
517 Builtin(&'a Primitive), // BUILTINSXP
518 Rstr(&'a Rstr), // CHARSXP
519 Logicals(&'a Logicals), // LGLSXP
520 Integers(&'a Integers), // INTSXP
521 Doubles(&'a Doubles), // REALSXP
522 Complexes(&'a Complexes), // CPLXSXP
523 Strings(&'a Strings), // STRSXP
524 Dot(&'a Robj), // DOTSXP
525 Any(&'a Robj), // ANYSXP
526 List(&'a List), // VECSXP
527 Expressions(&'a Expressions), // EXPRSXP
528 Bytecode(&'a Robj), // BCODESXP
529 ExternalPtr(&'a Robj), // EXTPTRSXP
530 WeakRef(&'a Robj), // WEAKREFSXP
531 Raw(&'a Raw), // RAWSXP
532 S4(&'a S4), // S4SXP
533 Unknown(&'a Robj),
534}
535
536/// Convert extendr's Rtype to R's SEXPTYPE.
537/// Panics if the type is Unknown.
538pub fn rtype_to_sxp(rtype: Rtype) -> SEXPTYPE {
539 use extendr_ffi::SEXPTYPE;
540 match rtype {
541 Rtype::Null => SEXPTYPE::NILSXP,
542 Rtype::Symbol => SEXPTYPE::SYMSXP,
543 Rtype::Pairlist => SEXPTYPE::LISTSXP,
544 Rtype::Function => SEXPTYPE::CLOSXP,
545 Rtype::Environment => SEXPTYPE::ENVSXP,
546 Rtype::Promise => SEXPTYPE::PROMSXP,
547 Rtype::Language => SEXPTYPE::LANGSXP,
548 Rtype::Special => SEXPTYPE::SPECIALSXP,
549 Rtype::Builtin => SEXPTYPE::BUILTINSXP,
550 Rtype::Rstr => SEXPTYPE::CHARSXP,
551 Rtype::Logicals => SEXPTYPE::LGLSXP,
552 Rtype::Integers => SEXPTYPE::INTSXP,
553 Rtype::Doubles => SEXPTYPE::REALSXP,
554 Rtype::Complexes => SEXPTYPE::CPLXSXP,
555 Rtype::Strings => SEXPTYPE::STRSXP,
556 Rtype::Dot => SEXPTYPE::DOTSXP,
557 Rtype::Any => SEXPTYPE::ANYSXP,
558 Rtype::List => SEXPTYPE::VECSXP,
559 Rtype::Expressions => SEXPTYPE::EXPRSXP,
560 Rtype::Bytecode => SEXPTYPE::BCODESXP,
561 Rtype::ExternalPtr => SEXPTYPE::EXTPTRSXP,
562 Rtype::WeakRef => SEXPTYPE::WEAKREFSXP,
563 Rtype::Raw => SEXPTYPE::RAWSXP,
564 #[cfg(not(use_objsxp))]
565 Rtype::S4 => SEXPTYPE::S4SXP,
566 #[cfg(use_objsxp)]
567 Rtype::S4 => SEXPTYPE::OBJSXP,
568 Rtype::Unknown => panic!("attempt to use Unknown Rtype"),
569 }
570}
571
572/// Convert R's SEXPTYPE to extendr's Rtype.
573pub fn sxp_to_rtype(sxptype: SEXPTYPE) -> Rtype {
574 match sxptype {
575 SEXPTYPE::NILSXP => Rtype::Null,
576 SEXPTYPE::SYMSXP => Rtype::Symbol,
577 SEXPTYPE::LISTSXP => Rtype::Pairlist,
578 SEXPTYPE::CLOSXP => Rtype::Function,
579 SEXPTYPE::ENVSXP => Rtype::Environment,
580 SEXPTYPE::PROMSXP => Rtype::Promise,
581 SEXPTYPE::LANGSXP => Rtype::Language,
582 SEXPTYPE::SPECIALSXP => Rtype::Special,
583 SEXPTYPE::BUILTINSXP => Rtype::Builtin,
584 SEXPTYPE::CHARSXP => Rtype::Rstr,
585 SEXPTYPE::LGLSXP => Rtype::Logicals,
586 SEXPTYPE::INTSXP => Rtype::Integers,
587 SEXPTYPE::REALSXP => Rtype::Doubles,
588 SEXPTYPE::CPLXSXP => Rtype::Complexes,
589 SEXPTYPE::STRSXP => Rtype::Strings,
590 SEXPTYPE::DOTSXP => Rtype::Dot,
591 SEXPTYPE::ANYSXP => Rtype::Any,
592 SEXPTYPE::VECSXP => Rtype::List,
593 SEXPTYPE::EXPRSXP => Rtype::Expressions,
594 SEXPTYPE::BCODESXP => Rtype::Bytecode,
595 SEXPTYPE::EXTPTRSXP => Rtype::ExternalPtr,
596 SEXPTYPE::WEAKREFSXP => Rtype::WeakRef,
597 SEXPTYPE::RAWSXP => Rtype::Raw,
598 #[cfg(not(use_objsxp))]
599 SEXPTYPE::S4SXP => Rtype::S4,
600 #[cfg(use_objsxp)]
601 SEXPTYPE::OBJSXP => Rtype::S4,
602 _ => Rtype::Unknown,
603 }
604}
605
606const PRINTF_NO_FMT_CSTRING: &[std::os::raw::c_char] = &[37, 115, 0]; // same as "%s\0"
607#[doc(hidden)]
608pub fn print_r_output<T: Into<Vec<u8>>>(s: T) {
609 let cs = CString::new(s).expect("NulError");
610 unsafe {
611 extendr_ffi::Rprintf(PRINTF_NO_FMT_CSTRING.as_ptr(), cs.as_ptr());
612 }
613}
614
615#[doc(hidden)]
616pub fn print_r_error<T: Into<Vec<u8>>>(s: T) {
617 let cs = CString::new(s).expect("NulError");
618 unsafe {
619 extendr_ffi::REprintf(PRINTF_NO_FMT_CSTRING.as_ptr(), cs.as_ptr());
620 }
621}
622
623#[cfg(test)]
624mod tests {
625 use super::prelude::*;
626 use crate as extendr_api;
627
628 use extendr_macros::extendr;
629 use extendr_macros::extendr_module;
630 use extendr_macros::pairlist;
631
632 #[allow(clippy::too_many_arguments)]
633 #[extendr]
634 pub fn inttypes(a: i8, b: u8, c: i16, d: u16, e: i32, f: u32, g: i64, h: u64) {
635 assert_eq!(a, 1);
636 assert_eq!(b, 2);
637 assert_eq!(c, 3);
638 assert_eq!(d, 4);
639 assert_eq!(e, 5);
640 assert_eq!(f, 6);
641 assert_eq!(g, 7);
642 assert_eq!(h, 8);
643 }
644
645 #[extendr]
646 pub fn floattypes(a: f32, b: f64) {
647 assert_eq!(a, 1.);
648 assert_eq!(b, 2.);
649 }
650
651 #[extendr]
652 pub fn strtypes(a: &str, b: String) {
653 assert_eq!(a, "abc");
654 assert_eq!(b, "def");
655 }
656
657 #[extendr]
658 pub fn vectortypes(a: Vec<i32>, b: Vec<f64>) {
659 assert_eq!(a, [1, 2, 3]);
660 assert_eq!(b, [4., 5., 6.]);
661 }
662
663 #[extendr]
664 pub fn robjtype(a: Robj) {
665 assert_eq!(a, Robj::from(1))
666 }
667
668 #[extendr]
669 pub fn return_u8() -> u8 {
670 123
671 }
672
673 #[extendr]
674 pub fn return_u16() -> u16 {
675 123
676 }
677
678 #[extendr]
679 pub fn return_u32() -> u32 {
680 123
681 }
682
683 #[extendr]
684 pub fn return_u64() -> u64 {
685 123
686 }
687
688 #[extendr]
689 pub fn return_i8() -> i8 {
690 123
691 }
692
693 #[extendr]
694 pub fn return_i16() -> i16 {
695 123
696 }
697
698 #[extendr]
699 pub fn return_i32() -> i32 {
700 123
701 }
702
703 #[extendr]
704 pub fn return_i64() -> i64 {
705 123
706 }
707
708 #[extendr]
709 pub fn return_f32() -> f32 {
710 123.
711 }
712
713 #[extendr]
714 pub fn return_f64() -> f64 {
715 123.
716 }
717
718 #[extendr]
719 pub fn f64_slice(x: &[f64]) -> &[f64] {
720 x
721 }
722
723 #[extendr]
724 pub fn i32_slice(x: &[i32]) -> &[i32] {
725 x
726 }
727
728 #[extendr]
729 pub fn bool_slice(x: &[Rbool]) -> &[Rbool] {
730 x
731 }
732
733 #[extendr]
734 pub fn f64_iter(x: Doubles) -> Doubles {
735 x
736 }
737
738 #[extendr]
739 pub fn i32_iter(x: Integers) -> Integers {
740 x
741 }
742
743 // #[extendr]
744 // pub fn bool_iter(x: Logicals) -> Logicals {
745 // x
746 // }
747
748 #[extendr]
749 pub fn symbol(x: Symbol) -> Symbol {
750 x
751 }
752
753 #[extendr]
754 pub fn matrix(x: RMatrix<f64>) -> RMatrix<f64> {
755 x
756 }
757
758 #[extendr]
759 struct Person {
760 pub name: String,
761 }
762
763 #[extendr]
764 /// impl comment.
765 impl Person {
766 fn new() -> Self {
767 Self {
768 name: "".to_string(),
769 }
770 }
771
772 fn set_name(&mut self, name: &str) {
773 self.name = name.to_string();
774 }
775
776 fn name(&self) -> &str {
777 self.name.as_str()
778 }
779 }
780
781 // see metadata_test for the following comments.
782
783 /// comment #1
784 /// comment #2
785 /**
786 comment #3
787 comment #4
788 **/
789 #[extendr]
790 /// aux_func doc comment.
791 fn aux_func(_person: &Person) {}
792
793 // Macro to generate exports
794 extendr_module! {
795 mod my_module;
796 fn aux_func;
797 impl Person;
798 }
799
800 #[test]
801 fn export_test() {
802 test! {
803 use super::*;
804 // Call the exported functions through their generated C wrappers.
805 unsafe {
806 wrap__inttypes(
807 Robj::from(1).get(),
808 Robj::from(2).get(),
809 Robj::from(3).get(),
810 Robj::from(4).get(),
811 Robj::from(5).get(),
812 Robj::from(6).get(),
813 Robj::from(7).get(),
814 Robj::from(8).get(),
815 );
816 wrap__inttypes(
817 Robj::from(1.).get(),
818 Robj::from(2.).get(),
819 Robj::from(3.).get(),
820 Robj::from(4.).get(),
821 Robj::from(5.).get(),
822 Robj::from(6.).get(),
823 Robj::from(7.).get(),
824 Robj::from(8.).get(),
825 );
826 wrap__floattypes(Robj::from(1.).get(), Robj::from(2.).get());
827 wrap__floattypes(Robj::from(1).get(), Robj::from(2).get());
828 wrap__strtypes(Robj::from("abc").get(), Robj::from("def").get());
829 wrap__vectortypes(
830 Robj::from(&[1, 2, 3] as &[i32]).get(),
831 Robj::from(&[4., 5., 6.] as &[f64]).get(),
832 );
833 wrap__robjtype(Robj::from(1).get());
834
835 // General integer types.
836 assert_eq!(Robj::from_sexp(wrap__return_u8()), Robj::from(123_u8));
837 assert_eq!(Robj::from_sexp(wrap__return_u16()), Robj::from(123));
838 assert_eq!(Robj::from_sexp(wrap__return_u32()), Robj::from(123.));
839 assert_eq!(Robj::from_sexp(wrap__return_u64()), Robj::from(123.));
840 assert_eq!(Robj::from_sexp(wrap__return_i8()), Robj::from(123));
841 assert_eq!(Robj::from_sexp(wrap__return_i16()), Robj::from(123));
842 assert_eq!(Robj::from_sexp(wrap__return_i32()), Robj::from(123));
843 assert_eq!(Robj::from_sexp(wrap__return_i64()), Robj::from(123.));
844
845 // Floating point types.
846 assert_eq!(Robj::from_sexp(wrap__return_f32()), Robj::from(123.));
847 assert_eq!(Robj::from_sexp(wrap__return_f64()), Robj::from(123.));
848 }
849 }
850 }
851
852 #[test]
853 fn class_wrapper_test() {
854 test! {
855 let mut person = Person::new();
856 person.set_name("fred");
857 let robj = r!(person);
858 assert_eq!(robj.check_external_ptr_type::<Person>(), true);
859 let person2 = <&Person>::try_from(&robj).unwrap();
860 assert_eq!(person2.name(), "fred");
861 }
862 }
863
864 #[test]
865 fn slice_test() {
866 test! {
867 unsafe {
868 // #[extendr]
869 // pub fn f64_slice(x: &[f64]) -> &[f64] { x }
870
871 let robj = r!([1., 2., 3.]);
872 assert_eq!(Robj::from_sexp(wrap__f64_slice(robj.get())), robj);
873
874 // #[extendr]
875 // pub fn i32_slice(x: &[i32]) -> &[i32] { x }
876
877 let robj = r!([1, 2, 3]);
878 assert_eq!(Robj::from_sexp(wrap__i32_slice(robj.get())), robj);
879
880 // #[extendr]
881 // pub fn bool_slice(x: &[Rbool]) -> &[Rbool] { x }
882
883 let robj = r!([TRUE, FALSE, TRUE]);
884 assert_eq!(Robj::from_sexp(wrap__bool_slice(robj.get())), robj);
885
886 // #[extendr]
887 // pub fn f64_iter(x: Doubles) -> Doubles { x }
888
889 let robj = r!([1., 2., 3.]);
890 assert_eq!(Robj::from_sexp(wrap__f64_iter(robj.get())), robj);
891
892 // #[extendr]
893 // pub fn i32_iter(x: Integers) -> Integers { x }
894
895 let robj = r!([1, 2, 3]);
896 assert_eq!(Robj::from_sexp(wrap__i32_iter(robj.get())), robj);
897
898 // #[extendr]
899 // pub fn bool_iter(x: Logicals) -> Logicals { x }
900
901 // TODO: reinstate this test.
902 // let robj = r!([TRUE, FALSE, TRUE]);
903 // assert_eq!(Robj::from_sexp(wrap__bool_iter(robj.get())), robj);
904
905 // #[extendr]
906 // pub fn symbol(x: Symbol) -> Symbol { x }
907
908 let robj = sym!(fred);
909 assert_eq!(Robj::from_sexp(wrap__symbol(robj.get())), robj);
910
911 // #[extendr]
912 // pub fn matrix(x: Matrix<&[f64]>) -> Matrix<&[f64]> { x }
913
914 let m = RMatrix::new_matrix(1, 2, |r, c| if r == c {1.0} else {0.});
915 let robj = r!(m);
916 assert_eq!(Robj::from_sexp(wrap__matrix(robj.get())), robj);
917 }
918 }
919 }
920
921 #[test]
922 fn r_output_test() {
923 // R equivalent
924 // > txt_con <- textConnection("test_con", open = "w")
925 // > sink(txt_con)
926 // > cat("Hello world")
927 // > sink()
928 // > close(txt_con)
929 // > expect_equal(test_con, "Hello world")
930 //
931
932 test! {
933 let txt_con = R!(r#"textConnection("test_con", open = "w")"#).unwrap();
934 call!("sink", &txt_con).unwrap();
935 rprintln!("Hello world %%!"); //%% checks printf formatting is off, yields one % if on
936 call!("sink").unwrap();
937 call!("close", &txt_con).unwrap();
938 let result = R!("test_con").unwrap();
939 assert_eq!(result, r!("Hello world %%!"));
940 }
941 }
942
943 #[test]
944 fn test_na_str() {
945 assert_ne!(<&str>::na().as_ptr(), "NA".as_ptr());
946 assert_eq!(<&str>::na(), "NA");
947 assert!(!"NA".is_na());
948 assert!(<&str>::na().is_na());
949 }
950
951 #[test]
952 fn metadata_test() {
953 test! {
954 // Rust interface.
955 let metadata = get_my_module_metadata();
956 assert_eq!(metadata.functions[0].doc, " comment #1\n comment #2\n\n comment #3\n comment #4\n *\n aux_func doc comment.");
957 assert_eq!(metadata.functions[0].rust_name, "aux_func");
958 assert_eq!(metadata.functions[0].mod_name, "aux_func");
959 assert_eq!(metadata.functions[0].r_name, "aux_func");
960 assert_eq!(metadata.functions[0].args[0].name, "_person");
961 assert_eq!(metadata.functions[1].rust_name, "get_my_module_metadata");
962 assert_eq!(metadata.impls[0].name, "Person");
963 assert_eq!(metadata.impls[0].methods.len(), 3);
964
965 // R interface
966 let robj = unsafe { Robj::from_sexp(wrap__get_my_module_metadata()) };
967 let functions = robj.dollar("functions").unwrap();
968 let impls = robj.dollar("impls").unwrap();
969 assert_eq!(functions.len(), 3);
970 assert_eq!(impls.len(), 1);
971 }
972 }
973
974 #[test]
975 fn pairlist_macro_works() {
976 test! {
977 assert_eq!(pairlist!(1, 2, 3), Pairlist::from_pairs(&[("", 1), ("", 2), ("", 3)]));
978 assert_eq!(pairlist!(a=1, 2, 3), Pairlist::from_pairs(&[("a", 1), ("", 2), ("", 3)]));
979 assert_eq!(pairlist!(1, b=2, 3), Pairlist::from_pairs(&[("", 1), ("b", 2), ("", 3)]));
980 assert_eq!(pairlist!(a=1, b=2, c=3), Pairlist::from_pairs(&[("a", 1), ("b", 2), ("c", 3)]));
981 assert_eq!(pairlist!(a=NULL), Pairlist::from_pairs(&[("a", ())]));
982 assert_eq!(pairlist!(), Pairlist::from(()));
983 }
984 }
985
986 #[test]
987 fn big_r_macro_works() {
988 test! {
989 assert_eq!(R!("1")?, r!(1.0));
990 assert_eq!(R!(r"1")?, r!(1.0));
991 assert_eq!(R!(r"
992 x <- 1
993 x
994 ")?, r!(1.0));
995 assert_eq!(R!(r"
996 x <- {{ 1.0 }}
997 x
998 ")?, r!(1.0));
999 assert_eq!(R!(r"
1000 x <- {{ (0..4).collect_robj() }}
1001 x
1002 ")?, r!([0, 1, 2, 3]));
1003 assert_eq!(R!(r#"
1004 x <- "hello"
1005 x
1006 "#)?, r!("hello"));
1007 assert_eq!(Rraw!(r"
1008 x <- {{ 1 }}
1009 x
1010 ")?, r!(1.0));
1011 }
1012 }
1013}